Oxford Cambridge and RSA

GCE

Mathematics

Unit 4736: Decision Mathematics 1
Advanced Subsidiary GCE

Mark Scheme for June 2016

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

1. Annotations and abbreviations

Annotation in scoris	Meaning
\checkmark and \boldsymbol{x}	
BOD	Benefit of doubt
FT	Follow through
ISW	Ignore subsequent working
M0, M1	Method mark awarded 0,1
A0, A1	Accuracy mark awarded 0, 1
B0, B1	Independent mark awarded 0, 1
SC	Special case
MR	Omission sign
Highlighting	Misread
Other abbreviations in mark scheme	Meaning
M1 dep*	Method mark dependent on a previous mark, indicated by *
cao	Correct answer only
oe	Or equivalent
rot	Rounded or truncated
soi	Seen or implied
nfww	Not from wrong working

2. Subject specific instructions

Annotations should be used whenever appropriate during your marking.
The A, M and B annotations must be used on your standardisation scripts for responses that are not awarded either 0 or full marks. It is vital that you annotate standardisation scripts fully to show how the marks have been awarded.

For subsequent marking you must make it clear how you have arrived at the mark you have awarded.

An element of professional judgement is required in the marking of any written paper. Remember that the mark scheme is designed to assist in marking incorrect solutions. Correct solutions leading to correct answers are awarded full marks but work must not be judged on the answer alone, and answers that are given in the question, especially, must be validly obtained; key steps in the working must always be looked at and anything unfamiliar must be investigated thoroughly.

Correct but unfamiliar or unexpected methods are often signalled by a correct result following an apparently incorrect method. Such work must be carefully assessed. When a candidate adopts a method which does not correspond to the mark scheme, award marks according to the spirit of the basic scheme; if you are in any doubt whatsoever (especially if several marks or candidates are involved) you should contact your Team Leader.

The following types of marks are available.

M

A suitable method has been selected and applied in a manner which shows that the method is essentially understood. Method marks are not usually lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, eg by substituting the relevant quantities into the formula. In some cases the nature of the errors allowed for the award of an M mark may be specified.

A
Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated Method mark is earned (or implied). Therefore M0 A1 cannot ever be awarded.

B

Mark for a correct result or statement independent of Method marks.

Unless otherwise indicated, marks once gained cannot subsequently be lost, eg wrong working following a correct form of
answer is ignored. Sometimes this is reinforced in the mark scheme by the abbreviation isw. However, this would not apply to a case where a candidate passes through the correct answer as part of a wrong argument.

The abbreviation ft implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A and B marks are given for correct work only - differences in notation are of course permitted. A (accuracy) marks are not given for answers obtained from incorrect working. When A or B marks are awarded for work at an intermediate stage of a solution, there may be various alternatives that are equally acceptable. In such cases, exactly what is acceptable will be detailed in the mark scheme rationale. If this is not the case please consult your Team Leader.

Sometimes the answer to one part of a question is used in a later part of the same question. In this case, A marks will often be 'follow through'. In such cases you must ensure that you refer back to the answer of the previous part question even if this is not shown within the image zone. You may find it easier to mark follow through questions candidate-by-candidate rather than question-by-question.

Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise. Candidates are expected to give numerical answers to an appropriate degree of accuracy, with 3 significant figures often being the norm. Small variations in the degree of accuracy to which an answer is given (e.g. 2 or 4 significant figures where 3 is expected) should not normally be penalised, while answers which are grossly over- or under-specified should normally result in the loss of a mark. The situation regarding any particular cases where the accuracy of the answer may be a marking issue should be detailed in the mark scheme rationale. If in doubt, contact your Team Leader.

Rules for replaced work
If a candidate attempts a question more than once, and indicates which attempt he/she wishes to be marked, then examiners should do as the candidate requests.

If there are two or more attempts at a question which have not been crossed out, examiners should mark what appears to be the last (complete) attempt and ignore the others.

NB Follow these maths-specific instructions rather than those in the assessor handbook.

For a genuine misreading (of numbers or symbols) which is such that the object and the difficulty of the question remain
unaltered, mark according to the scheme but following through from the candidate's data. A penalty is then applied; 1 mark is generally appropriate, though this may differ for some units. This is achieved by withholding one A mark in the question.

Note that a miscopy of the candidate's own working is not a misread but an accuracy error.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Question} \& \multicolumn{7}{|c|}{Answer/Indicative content} \& Mark \& Guidance \\
\hline 3 \& (i) \& \multicolumn{7}{|l|}{\(P=10 x-2 y-3 z\)} \& \[
\begin{aligned}
\& \text { B1 } \\
\& {[1]}
\end{aligned}
\] \& \begin{tabular}{l}
\(10 x-2 y-3 z\), may imply ' \(P=\) ' \\
Not \(P-10 x+2 y+3 z=0\) and not multiples of \(10 x-2 y-3 z\)
\end{tabular} \\
\hline \& (ii) \& \multicolumn{7}{|l|}{\[
\begin{aligned}
\& 5 x-5 z \leq 60(\text { or } x-z \leq 12) \\
\& 4 x+3 y \leq 100 \\
\& x \geq 0, y \geq 0, z \geq 0
\end{aligned}
\]} \& \begin{tabular}{l}
\[
\begin{aligned}
\& \text { M1 } \\
\& \text { A1 }
\end{aligned}
\]
B1 \\
[3]
\end{tabular} \& \begin{tabular}{l}
\(5 x-5 z(\leq,<, \geq,>\) or \(=) 60\) or \(4 x+3 y((\leq,<, \geq,>\) or \(=) 100\) (or scaled versions of these) or with slack variables or similar, including slack variables and inequalities \\
Both correct, with inequality signs and no slack variables No extra (incorrect) constraints isw subsequent inclusion of slack variables to make equalities Non-negativity for \(x, y\) and \(z\) (as inequalities, not in words)
\end{tabular} \\
\hline \& (iii) \& \multicolumn{7}{|l|}{\begin{tabular}{l}
Rows and columns may be reordered, try to follow candidate's intention \\
Check tableau first, correct tableau \(\Rightarrow 4\) marks \\
Pivot on \(x\) column
\[
60 \div 5=12,100 \div 4=25,12<25
\] \\
so pivot on 5 in column \(x\) (row 2 in column \(x\)) \\
Pivot row (new row 2) = row \(2 \div 5\) \\
New row \(1=\) row \(1+10 \times\) pivot row \\
New row 3 = row \(3-4 \times\) pivot row
\end{tabular}} \& B1
M1
M1

A1

[4] \& | Candidates may use an intermediate tableau with the new pivot row but the other rows as original and then follow this with the augmented tableau |
| :--- |
| Correct pivot choice (may be implied from augmented tableau) |
| Dividing through their pivot row correctly, even if pivot choice was wrong (may be implied from working or augmented tableau) |
| Augmented table has correct structure, in terms of existence of basis/non-basis columns, entries in RHS column are non-negative and P value in RHS column (their 120) has increased (from 0) |
| Correct tableau, using fractions and/or decimals Mark printed table in answer book unless crossed out and replaced (or candidate has made their intention clear) |

\hline \& (iv) \& \multicolumn{7}{|l|}{No negative values in objective row} \& | B1 |
| :--- |
| [1] | \& Recognising that all entries in top/first row are non-negative Or entries in top row are positive or zero (but not 'positive' without 'or zero') or equivalent using inequality signs

\hline \& (v) \& \multicolumn{7}{|l|}{$$
\begin{aligned}
& x=25, y=0, z=13 \\
& P=211
\end{aligned}
$$} \& \[

$$
\begin{aligned}
& \text { B1 } \\
& \text { B1 } \\
& {[2]}
\end{aligned}
$$

\] \& | All three, including $y=0$. Need values and have them identified with x, y and z appropriately. Not just $(25,0,13)$. |
| :--- |
| 211, cao but may imply ' $P=$ ' |

\hline
\end{tabular}

Question		Answer/Indicative content	Mark	Guidance
6	(i)	Time constraint $20 x+15 y \leq 100 \Rightarrow 4 x+3 y \leq 20$ (as given) Cost constraint: $(8 \times 8+35) x+(8 \times 3+80) y \leq 600 \Rightarrow 99 x+104 y \leq 600$ Lower bound constraints: $x \geq 1$ and $y \geq 1$	B1 M1 A1 B1 [4]	Need to see $20 x+15 y, 100$ and 'time' or 'hours' Using $8(8 x+3 y)$ to cost the material (seen, or implied from $99 x+104 y$) $99 x+104 y \leq 600$ or any positive multiple of this constraint Both $x \geq 1$ and $y \geq 1$ and no extras (apart from non-negativity, which can be ignored)
	(ii)	Line $4 x+3 y=20$, passing through $(5,0)$ and $\left(0,6 \frac{\pi}{3}\right)$ Line $99 x+104 y=600$ passing close to $(6,0)$ and $(0,6)$ Lines $x=1$ and $y=1$	M1 M1 M1 A1 [4]	Line plotted so that it cuts axes at (4.75-5.25, 0) and (0, 6.5-6.75) (when extrapolated, if necessary) Line plotted so that it cuts axes at $(6-6.25,0)$ and $(0,5.75-6)$ (when extrapolated, if necessary) $x=1$ and $y=1$ (e.g. as boundaries of feasible region) Feasible region correct (indicated by, for example, shading in, shading out or labelling as $F R, R$ or similar) The A mark is dependent on all three M marks.
	(iii)	5	$\begin{aligned} & \text { B1 } \\ & {[1]} \\ & \hline \end{aligned}$	SC1 if $(0,6),(1,5)$ or $(2,4)$ is written as a feasible point (or in $x=$, $y=$ form) and total is shown as 6
	(iv)	Total cost $(£)=15(20 x+15 y)+(99 x+104 y)=(399 x+329 y)$ Need $x+y=5$ with y as large as possible $\Rightarrow x=1, y=4$ 1 bridesmaid and 4 page boys (costing £1715)	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { [3] } \\ & \hline \end{aligned}$	$399 x+329 y$ or $7(57 x+47 y)$, not follow through, need not give $£$, ignore ≤ 600 if written One of the points $(1,4),(2,3),(3,2),(4,1)$ soi as solution (written or seen used in working) This solution (cao) in context (in words), with or without cost

Question			Answer/Indicative content	Mark	Guidance
7	(i)		$\begin{aligned} & Y Z R S W X T Q Y \\ & 135 \text { minutes } \end{aligned}$	$\begin{aligned} & \hline \text { M1 } \\ & \\ & \text { A1 } \\ & \text { B1 } \\ & \text { [3] } \\ & \hline \end{aligned}$	Route starts Y Z \quad S W (allow correct list of arcs: $Y Z, Z R, R S, S W$) Correct cycle, including returning to Y (allow correct list of arcs) 135 cao, units not necessary
	(ii)			B1 M1 A1 B1 [4]	Using Kruskal's algorithm on list (indicating either which arcs are used or which are not used, at least as far as $W Y$ - i.e. dealing with the whole of the top row correctly) Drawing a spanning tree for the eight vertices (i.e. any tree that has 7 arcs, whether it branches or not) Correct tree 88 cao, units not necessary
	(iii)	(a)	$88-25=63$	$\mathrm{B} 1 \mathrm{ft}$ [1]	'their 88' - their arc weight(s) from Q, strict ft from (ii) Units not necessary If no numerical response to (ii) then accept 63
	(iii)	(b)	$Q T=25, Q R=30,63+25+30=118$ minutes	B1 ft [1]	'their 63 ' +55 strict ft from (iii)(a), units not necessary If no numerical response to (iii)(a) then accept 118 only
	(iv)		$\begin{aligned} & Q T W X Y Z R S Q \\ & =130 \text { mins, time for stops }=170 \text { mins } \Rightarrow 300 \text { minutes } \\ & \text { Route: } Y Z R S Q T W X Y \end{aligned}$	B1 B1 B1 [3]	This closed route written, in this order starting and ending at Q (allow correct list of arcs: $Q T, T W, W X, \ldots, S Q$) 130,170 and 300 seen or 300 from an appropriate calculation, such as 130 (cao) and $5+5+10+30+30+30+30+30$ This route written (or in reverse) starting and ending at Y (allow correct list of arcs: $Y Z, Z R, R S, \ldots, X Y$)

For
reference

	Q	R	S	T	W	X	Y	Z
Q	-	30	35	25	37	40	43	32
R	30	-	12	15	15	20	20	8
S	35	12	-	20	10	18	25	16
T	25	15	20	-	12	16	18	18
W	37	15	10	12	-	8	14	20
X	40	20	18	16	8	-	17	22
Y	43	20	25	18	14	17	-	13
Z	32	8	16	18	20	22	13	-

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre
Education and Learning
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU
Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

